
GIOVANNI FACCHINI�, FREEK VAN MEGEN, PETER BORM and
STEF TIJS

CONGESTION MODELS AND WEIGHTED BAYESIAN
POTENTIAL GAMES

ABSTRACT. Games associated with congestion situations à la Rosenthal (1973)
have pure Nash equilibria. This result implicitly relies on the existence of a
potential function. In this paper we provide a characterization of potential games
in terms of coordination games and dummy games. Second, we extend Rosenthal’s
congestion model to an incomplete information setting, and show that the related
Bayesian games are potential games and therefore have pure Bayesian equilibria.
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1. INTRODUCTION

The situation in which different agents make use of the same set
of facilities and where the costs of use are expressed in terms of a
function depending on the number of users has been described by
Rosenthal (1973). He also showed that the associated strategic game
has a pure strategy Nash equilibrium. This result is implicitly due to
the existence of a potential function for this class of games, as has
been shown by Monderer and Shapley (1996).

In this paper we first derive a characterization of (weighted) poten-
tial games in terms of coordination and dummy games, which enables
us to compute the dimension of the linear space of weighted potential
games. In the second part we propose a generalization of Rosenthal’s
model, which gives the possibility to model broader classes of eco-
nomic and real life situations. In fact we consider situations with
incomplete information, in which an agent can be of several types
and has, according to each type, a specific goal. On the other hand we
will allow the different individuals to have different cost functions,
introducing a vector of weights. A weighted congestion model has
also been proposed by Milchtaich (1996) but, as will be shown later,
the role of the weight vector in our model is quite different.

Theory and Decision 42: 193–206, 1997.
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.



194 GIOVANNI FACCHINI

It turns out that the congestion games associated with weighted
Bayesian congestion situations are Bayesian potential games and,
under the common prior assumption, this implies the existence of
a pure Bayesian equilibrium (van Heuman, Peleg, Tijs and Borm,
1996). These results are illustrated by a booking game. The paper
concludes with an example which shows that Bayesian potential
games need not to have a pure Bayesian equilibrium when the com-
mon prior assumption (Harsanyi 1967–68) is violated. This was
posed as an open question by van Heumen et al. (1996).

2. POTENTIAL GAMES

In this section we provide a new characterization of weighted poten-
tial games, which were introduced by Monderer and Shapley (1996).
As a result of this characterization by means of coordination and
dummy games, the dimension of the class of potential games is
easily calculated.

2.1. A Characterization of Weighted Potential Games

Let G = hN; fAigi2N ; fuigi2Ni be a game in strategic form, where
N is the finite set of players,Ai is the finite set of actions available to
player i and ui :

Q
i2N Ai ! R is some von Neumann–Morgenstern

utility function for player i. The gameG is called a weighted potential
game if there exists a function P :

Q
i2N Ai ! R and a vector

w 2 R
N
++

such that

ui(ai; a�i)� ui(a
0
i; a�i) = (P (ai; a�i)� P (a0i; a�i))wi

for all i 2 N; ai 2 Ai; a
0
i 2 Ai and a�i 2 A�i :=

Q
j2NnfigAj .

We now consider the following two families of games: �WC

and �D. Let �WC be the class of strategic form games G = hN ,
fAigi2N ; fcigi2Ni for which the utility function of player i is such
that there exist a vector w 2 R

N
++

and a function P :
Q
i2N Ai ! R

with for each i 2 N : ci = wiP . Such games are called the weighted
coordination games.

Let �D be the class of strategic form games G = hN , fAigi2N ;

fdigi2Ni in which the utility function of a player does not depend
on his own actions. So, for each a�i 2 A�i, there exists a k 2 R
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such that di(ai; a�i) = k for each ai 2 Ai. These games are called
dummy games.

In the following theorem we will use the above notions to char-
acterize the class of weighted potential games.

THEOREM 2.1. G = hN; fAigi2N ; fuigi2Ni is a weighted poten-
tial game if and only if

ui = ci + di

for all i 2 N where ci and di are such that hN; fAigi2N ; fcigi2Ni 2

�WC and hN; fAigi2N ; fdigi2Ni 2 �D.1

Proof. We will just prove the ‘only if’ part. LetG = hN; fAigi2N ;

fcigi2Ni be a weighted potential game, then there exist w 2 R
N
++

and P :
Q
i2N Ai ! R with:

ui(ai; a�i) = wiP (ai; a�i) + ui(a
0
i; a�i)� wiP (a

0
i; a�i)

for all i 2 N; ai 2 Ai; a
0
�i 2 Ai and a�i 2 A�i.

Taking ci(ai; a�i) = wiP (ai; a�i) and di(ai; a�i) = ui(ai; a�i)�
wiP (ai; a�i), it follows that hN; fAigi2N ; fcigi2Ni is a coordination
game and hN; fAigi2N ; fdigi2N i is a dummy game sinceui(ai; a�i)�
wiP (ai; a�i) = ui(a

0
i; a�i) � wiP (a

0
i; a�i) for all i 2 N; ai 2

Ai; a
0
i 2 Ai and a�i 2 A�i.

EXAMPLE 2.1. In the following 2 � 2 game, which is a simplified
version of Rousseau’s stag-hunt game2 (1971), a player has to decide
whether to cooperate to hunt a stag (action S) or to go off on his own
and hunt rabbits (action R).

" S R

S 10; 20 0; 6
R 3; 0 3; 6

#

If the weight vector is w = (1; 2), then a weighted potential exists
and is given by

P =

�
10 3
3 6

�

For player 1 the payoff matrix is�
10 0
3 3

�
= 1

�
10 3
3 6

�
+

�
0 �3
0 �3

�
w-pot. game w-coord. game dummy game
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and likewise for player 2�
20 6
0 6

�
= 2

�
10 3
3 6

�
+

�
0 0

�6 �6

�
w-pot. game w-coord. game dummy game

2.2. On the Dimension of the Linear Space of Potential Games

Consider the family �N;m of strategic form games with fixed player
set N = f1; . . . ; ng and fixed action space A =

Q
i2N Ai with

mi = jAij and m = (m1; . . . ; mn). Clearly the family �N;m can
be identified with the function space (RN )

Q
i2N

Ai of maps fromQ
i2N Ai into R

N in a natural sense, according to the fact that the
game is ‘known’ if for every action profile a 2

Q
i2N Ai the utility

vector (u1(a); u2(a); . . . ; un(a)) is given. Therefore we have that for
the family �N;m

dim(�N;m) = dim(RN )
Q

i2N
Ai = n

Y
i2N

mi:

In Theorem 2.1 we have characterized (weighted) potential games
as the sum of coordination games and dummy games. Using that
result, we will derive the dimension of the linear space of potential
games.

Let P�N;m � �N;m denote the subclass of potential games with
N players and m = (m1; . . . ; mn), where mi = jAij. As a corollary
of Theorem 2.1 we have that

(�) P�N;m = �N;mD + �N;mC

where �N;mC is the class of coordination games and �N;mD is the class
of dummy games.

We can now prove the following

THEOREM 2.2. For the linear space of potential games P�N;m:

dim P�N;m =
nY
i=1

mi +
nX
i=1

0
@Y
j 6=i

mj

1
A� 1:

Proof. Because of (�)we have that dim(P�N;m) = dim(�N;mD )�

dim(�N;mC \ �N;mD ). The dimensions of the right hand side of the
equation can be easily computed, identifying �N;mC with the function
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space (R)
Q

i2N
Ai , and �N;mD with the function space (R)

Q
i6=1

Ai �

� � � � (R)
Q

i6=n
Ai .

Then dim((R)
Q

i2N
Ai) =

Q
i2N mi and dim((R)

Q
i6=1

Ai � � � � �

(R)
Q

i6=n
Ai) =

P
i2N

Q
j 6=imj .

Now it suffices to show that dim(�N;mD \ �N;mC ) = 1. Using the
definition of coordination and dummy games a game hN; fAigi2N ;

fuigi2Ni in (�N;mD \ �N;mC ) has the property that there exist u :Q
i2N Ai ! R such that ui(a) = u(a) for all i 2 N; a 2

Q
i2N Ai

because it is a coordination game and u(a) = u(b) for all a; b 2Q
i2N Ai since it also is a dummy game. It means that (�N;mD \�N;mC )

can be identified with R.

REMARK 2.3. It should be mentioned that Monderer and Shapley
(1996) provide such note on dimensions without proof in Appendix
B of their paper. It is straightforward to show that the same result
holds even in the computation of the dimension of the linear space
of weighted potential games with fixed weight vector.

3. CONGESTION SITUATIONS AND BAYESIAN POTENTIAL GAMES

Rosenthal (1973) considers congestion situations where each agent
wants to achieve an individual objective by choosing a suitable
subset of a set M of common facilities. The using cost of each
separate facility depends on the number of users.

Congestion situations give rise to potential games and, conversely,
each finite potential game can be derived from a congestion situation
(Monderer and Shapley, 1996). An important property of potential
games is the existence of a pure Nash equilibrium. In this section
we look at a general type of congestion situation which gives rise to
Bayesian potential games with pure Bayesian equilibria. Our con-
gestion model constitutes a generalization of Rosenthal’s one.

EXAMPLE 3.1. (A booking game). Consider the situation in which
two agents, depending on their types, want to go to a concert hall
to see Verdi’s Aida (type �) or to the stadium (type �), to watch the
soccer match Ajax–AC Milan. There are three places in which the
tickets can be booked, the stadium (S), where it is possible to buy
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Fig. 1.

only the soccer ticket, the concert hall (C), which only sells opera’s
tickets and a booking office (B) where both tickets can be obtained.
In order to reserve a ticket, the agents decide to call the providing
facilities. We assume that the first agent is at home while the second
one is on the street and therefore has to call from a public telephone.
If both call the same facility simultaneously, then someone has to
wait on line. For this reason, we assume that the average calling time
is increased by 50%, which obviously leads to an additional cost.
Finally, if the agents call the ‘correct’ facility with respect to their
type, then their utility is increased by some reward. The picture in
Figure 1 illustrates this situation. In particular, we assume that the
average time for calling the stadium is 20 if only one agent calls
and 30 if both try to ring. For the booking office we similarly have
an average calling time of 16 and 24 and for the concert hall of 22
and 33, respectively. Moreover, we take into account the fact that
agent 1 calls from home while agent 2 calls from a public telephone.
Since in the Netherlands the call cost per unit of time from a public
phone is twice as high as the cost for calling from home, we have to
‘weight’ the average calling time by a factor of one for agent 1 and
two for agent 2.

Furthermore we suppose that agent 1 can enjoy entertainments
more than agent 2 and therefore their rewards for obtaining the right
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ticket, independently of their type, are 500 and 400, respectively.
Obtaining the wrong ticket gives a zero reward.

The general model underlying this kind of situation is called a
weighted Bayesian congestion situation and can be described as
follows:

[N;M; fTigi2N ; p; frigi2N ; fckgk2M ; w]

where

� N = f1; 2; . . . ; ng is the finite set of players.
� M = f1; 2; . . . ; mg is the finite set of facilities.
� Ti is the finite set of types of users i 2 N , which specify the
goal of each player.
� p 2 �(T ) is a probability measure on T :=

Q
i2N Ti.

� ri : 2M � Ti ! R; ri(ai; ti) is the reward of player i for using
the facilities in ai 2 2M if his type is ti.
� ck : f0; 1; . . . ; jN jg ! R+ is the cost function depending on
the number of users of facility k.
� w 2 R

N
++

is a interpreted as follows: player i has costswick(`);
` 2 f0; 1; . . . ; jN jg for factor k if there are ` users.

We are now going to define a Bayesian game (with common prior)
corresponding to the weighted congestion situation described above.
The general form of a Bayesian game G is given by

G = hN; fAigi2N ; fTigi2N ; p; fuigi2Ni

where N; fTigi2N and p play the obvious roles and the set of actions
is defined by Ai := 2M for all players i 2 N and the utility function
ui : (2M)N � T ! R for all i 2 N by

(��) ui(a; t) = ri(ai; ti)� wi

X
k2ai

ck(nk(a1; . . . ; an))

for all s 2 (2M)N and t 2 T , where nk(a1; . . . ; an) is the number of
users of facilityk according to the chosen facility sets. It means that in
our model the role of the weights is to extend Rosenthal’s framework
allowing different cost functions for each player. The problem of
how to model a players specific contribution to the congestion has
been considered also by Milchtaich in a recent paper (1996). In
his framework however, where the weights are used to model the
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fact that a car and a heavy truck play different roles in inducing
congestion, it is impossible to guarantee the existence of a pure
strategy Nash equilibrium if not all weights are equal.

Formally, given a Bayesian game G = hN; fAigi2N ; p; fuigi2Ni

a strategy of player i is a map xi : Ti ! Ai. A strategy profile
x 2 X :=

Q
i2N Xi is called a (pure) Bayesian equilibrium of the

game G if for all i 2 N; ti 2 Ti and ai 2 Ai:X
t�i2T�i

p(t�ijti)ui(fxj(tj)gj2N ; t)

>

X
t�i2T�i

p(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t)

where p(t�ijti) is the conditional probability3 player i puts on t�i,
assuming that his own type is ti.

For a Bayesian game G = hN; fAigi2N ; fTigi2N ; p; fuigi2Ni the
corresponding ex ante game Ĝ is defined by

Ĝ = hX1; . . . ; Xn; û1; . . . ; ûni

where for all i 2 N;Xi = (Ai)
Ti is the strategy set for player i and

ûi(x) =
P

t2T p(t)ui((xj(tj))i2N ; t) is the payoff function.
Harsanyi (1968, II, p. 321) proved the following theorem.

THEOREM 3.1. For any Bayesian game G with common prior, x is
a Bayesian equilibrium of G if and only if x is a Nash equilibrium
of the ex ante game Ĝ.

In Theorem 3.4 it will be shown that the game associated to
a weighted Bayesian congestion situation is a weighted Bayesian
potential game in the sense of the following:

DEFINITION 3.1. LetG be a Bayesian game.G is called a weighted
Bayesian potential game if there exist a function q : A�T ! R and
a vector w 2 R

N
++

such that, for every i 2 N; a 2 A; bi 2 Ai, and
t 2 T

ui(a; t)� ui((a�i; bi); t) = wi(q(a; t)� q((a�i; bi); t)):

The function q is called a weighted potential for G.
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THEOREM 3.2. Let G = hN; fAigi2N ; fTigi2N ; p; fuigi2Ni be a
weighted Bayesian game arising from a weighted Bayesian conges-
tion situation [N;M; fTigi2N ; p; frigi2N ; fckgk2M ; w]. Then G is a
weighted Bayesian potential game.

Proof. Define

q(a; t) =
X
i2N

ri(ai; ti)

wi

�
X
k2M

nk(a)X
`=0

ck(`):

Then, using (��)

wiq(a; t)� ui(a; t) = �
X
j 6=i

rj(aj; tj)wi

wj

�wi

X
k2M

nk(a�i)X
`=0

ck(`):

This means that wiq(a; t) � ui(a; t) does not depend on the action
ai. Therefore q is a weighted potential for G.

It is not always the case that a Bayesian potential game can be
derived from a weighted Bayesian congestion situation. Igal Milch-
taich provided the following counterexample. Consider a Bayesian
potential game where N = f1; 2g; T1 = f�g; T2 = f
; �g. The
payoff matrices are


 �

�

" L R

T 1; 1 0; 0
B 0; 0 1; 1

# " L R

0; 0 1; 1
1; 1 0; 0

#

Recalling equation (��), the following should be true

u2((a1; L); (�; 
))� u2((a1; L); (�; �))

= r2(L; 
)� r2(L; �):

In other words, the difference should not depend on the action taken
by player 1. Going back to the example, it is easy to see that this
difference is plus or minus 1 depending on player’s choice.
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REMARK 3.3. Our result can be easily extended to type dependent
weights, but this could give rise to interpretation problems (see the
booking game for an example). Therefore we prefer to confine all
the private information present in our model to the type dependent
targets.

We now apply the previous results to our example of a booking
situation and obtain the associated booking game, which is described
as follows:

hf1; 2g; fS;B; Cg; f�; �g; p; fu1; u2gi

where the common prior p will be specified later and u1; u2 are
the utility functions of the players. For the sake of simplicity, we
eliminate the strategies which suggest to each player to use two
or three different facilities, because they are obviously dominated.
Therefore the knotted payoff matrices are, depending on the type of
each player,

� �

�

" S B C

S (�30;�60) (�20; 368) (�20; 356)
B (484;�40) (476; 352) (484; 356)
C (478;�40) (478; 368) (467; 334)

# " S B C

(�30; 340) (�20; 368) (�20;�44)
(484; 360) (476; 352) (484;�44)
(478; 360) (478; 368) (467;�66)

#

�

"
S (470;�60) (480; 368) (480; 356)
B (484;�40) (476; 352) (484; 356)
C (�22;�40) (�22; 368) (�33; 334)

# "
(470; 340) (480; 368) (480;�44)
(484; 360) (476; 352) (484;�44)
(�22; 360) (�22; 368) (�33;�66)

#
:

In other words, for example, player 1 likes to go to the concert
hall (i.e. he is of type �) and player 2 is fond of soccer (type �), then,
when both call the booking office to book their ticket, player 1 has a
utility of 476 = 500 � 24 and player 2 of 352 = 400 � 2 � 24. We
can compute now an associated potential, which is given by

� �

�

2
64

S B C

S 0 214 208
B 514 710 712
C 508 712 695

3
75
2
64

S B C

192 206 0
706 702 504
700 704 487

3
75
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�

2
64S 492 706 700

B 506 702 704
C 0 204 187

3
75
2
64 705 719 513

719 715 517
213 217 0

3
75:

Consider now the following (common) prior

p =

" � �

� 4
10

2
10

� 1
10

3
10

#
:

It turns out that several strategies are dominated for both players. So
the ‘knotted’ ex ante game is:

2
64

BS BB CS CB

BS 476:2; 351:6 477:6; 358:4 479:4; 352 480:8; 358:8�

BB 480; 356 476; 352 484; 358� 480; 354
CS 475:8; 358 478:8; 368� 471:4; 343:2 474:4; 353:2
CB 479:6; 362:4� 477:2; 361:6 476; 349:2 473:6; 348:4

3
75:

There are four Nash equilibria in pure strategies and considering
an associated ex ante potential matrix, we can show that (BB;CS)
is the potential maximizer.

2
6664

BS BB CS CB

BS 707:3 710:7 707:5 710:9�

BB 711:1 709:1 712:1+ 710:1
CS 706:9 711:9� 699:5 704:5
CB 710:7� 710:3 704:1 703:7

3
7775:

In terms of our congestion situation, the behaviour prescribed by
the potential maximizer is that if player 2 is of type �, he has to
call the concert hall directly, while if he is of type �, he has to call
the stadium directly. Player 1 instead, regardless of his type, must
always call the booking office in order to get the desired tickets.

4. INCONSISTENT PRIORS

In this paper we have considered a weighted congestion model,
which has been associated to a weighted Bayesian potential game.
It is well known (see van Heuman et al. 1996) that every Bayesian
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potential game with common prior has a pure strategy equilibrium.
In the same paper the problem whether each Bayesian potential game
has a pure equilibrium is posed as an open question. It turns out that
this need not be the case, as can be seen in the next example. To
show our result we first state the following:

LEMMA 4.1. Let G = hN; fAigi2N , fTigi2N , fpigi2N , fuigi2Ni
be a general Bayesian game where pi is the probability measure of
player i over T :=

Q
i2N Ti. Let Ĝ be the game associated with G

where, for every i 2 N , Xi is the set of pure strategies of player i
and for every x 2 X; i 2 N ,

ûi(x) :=
X
t2T

pi(t)ui(fxj(tj)gj2N ; t)

then if fxigi2N is a Bayesian equilibrium of G, fxigi2N is a Nash
equilibrium of the ex-ante game Ĝ associated with G.

Proof. By definition of a Bayesian equilibrium, we have that for
all ti 2 Ti, ai 2 Ai,X

t�i

pi(t�ijti)ui(fxj(tj)gj2N ; t)

>

X
t�i

pi(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t):

Then

X
t�i

0
@X
s�i

pi(s�i; ti)

1
A pi(t�ijti)ui(fxj(tj)gj2N ; t)

>

X
t�i

0
@X
s�i

pi(s�i; ti)

1
A pi(t�ijti)ui((fxj(tj)gj2Nnfig; ai); t)

so for each ti 2 Ti, ai 2 AiX
t�i

pi(t)ui(fxjgj2N ; t) >
X
t�i

pi(t)ui((fxjgj2Nnfig; ai); t):

This means thatX
t

pi(t)ui(fxj(tj)gj2N ; t)

>

X
t

pi(t)ui((fxj(tj)gj2Nnfig; ai); t)
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and thus for all yi 2 Xi

ûi(x) > ûi(yi; x�i):

Now we look at a specific Bayesian potential game with inconsistent
priors. There are two players, 1 and 2. Each player has two different
types T1 = f�; �g; T2 = f
; �g. The priors p1; p2 are given by

p1 =

" 
 �

� 0 3
4

� 1
4 0

#
p2 =

" 
 �

� 1
3 0

� 0 2
3

#

and the payoff matrices are given typewise:


 �

�

" L R

T 1; 1 0; 0
B 0; 0 1; 1

# " L R

0; 0 1; 1
1; 1 0; 0

#

�

"
T 0; 0 1; 1
B 1; 1 0; 0

# "
0; 0 1; 1
1; 1 0; 0

#

The corresponding Ĝ game is given by

2
66664

LL LR RL RR

TT 0; 1
3

3
4 ; 1

1
4 ; 0 1; 2

3

TB 1
4 ; 1 1; 1

3 0; 2
3 ;

3
4 ; 0

BT 3
4 ; 0 0; 2

3 1; 1
3

1
4 ; 1

BB 1; 2
3

1
4 ; 0

3
4 ; 1 0; 1

3

3
77775

It is easy to show that there are no pure Nash equilibria in this game.
Then using Lemma 4.1 the Bayesian game does not have a pure
Bayesian equilibrium.

NOTES

� G.F. gratefully acknowledges financial support provided by the University of
Trento, Italy.

1 Using the sum characterization it is easy to get a new axiomatic characteriza-
tion of the potential maximizer, following the line originally proposed by Peleg,
Potters and Tijs (1996).
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2 It is interesting to note that in 2� 2 weighted stag-hunt games the potential
maximizer selects the same equilibrium as the Harsanyi–Selten (1988), Güth
(1992) and Carlsson–Van Damme (1993) criteria.

3 This conditional probability can be defined if the assumption is made that
every player puts positive probability on each of his types. We restrict ourselves
to games for which this is the case.
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les hommes, from Oeuvres complètes II. Paris: Editions du Seuil.

GIOVANNI FACCHINI�, FREEK VAN MEGEN, PETER BORM and STEF TIJS

Department of Econometrics and CentER
Tilburg University
P.O. Box 90153
5000 LE Tilburg
The Netherlands


